

Relative Permeability and Capillary Pressure Controls on CO₂ Migration and Brine Displacement

Sally M. Benson¹ Ljuba Miljkovic², Liviu Tomutsa² and Christine Doughty² ¹Energy Resources Engineering Dept., Stanford University ²Earth Sciences Division, Lawrence Berkeley National Laboratory

- Funded by DOE Fossil Energy through the Zero Emissions Research and Technology Program (ZERT)
- Outstanding co-authors from Lawrence Berkeley National Laboratory
 - Ljuba Miljkovic
 - Liviu Tomutsa
 - Christine Doughty

Some Key Issues for CO₂ Storage in Deep Saline Aquifers

- What fraction of the pore space can be filled with CO₂?
- How big will the CO₂ plume be?
- How much CO₂ will be dissolved?
- How much will capillary trapping immobilize CO₂?
- Can accurate models be developed to predict CO₂ fate and transport?

Core-flood Set-Up for Relative Permeability Measurements

*Brine composition: CO₂ saturated brine with 0.5 molar potassium iodide

Core-Scale Imaging of CO₂ Distributions

CT Scans Measure Core Porosity

Calculation of Permeability

Core Permeability Distribution

Laboratory Injections of Various CO₂-Brine Proportions

• Experimental Setup:

- > 5%, 10%, 20%, 50%, 80%, 90%, 100% CO₂ injections
- 3mL/min constant flow-rate
- 6.89MPa constant back-pressure
- > 16 ±2°C lab temperature
- Brine contains dissolved CO₂
- CO2 contains dissolved water

- Measure CO₂ Saturation with CT Scanner
 - Digitally reconstruct image

Relative Permeability Curves

Small-scale CO₂ Saturation Variations

Simulated Injection of Various CO₂-Brine Proportions

- Simulation Cases
 - 10%, 90%, 100% CO₂ injections
 - 3mL/min constant flow-rate
 - 6.89MPa constant back-pressure
 - > 16°C constant temperature
 - Brine contains dissolved CO₂
 - CO₂ contains dissolved water
- Core Characterization
 - Porosity/permeability "map" coarsened
 - Relative permeability/capillary pressure curves matched to experimental curves
- TOUGH2 (Pruess, LBNL)

Simulated CO₂ Saturations

Constant Pc Produces Homogeneous CO2 Saturations

CO₂ Saturation:0%

Fitting Capillary Pressure Curve

*Silin et al. (submitted, 2007)

CO₂ Saturation:0%

Capillary Pressure Curve

Why should we care?

Why Should We Care?

Average CO₂ saturation is:

Decreased by sub-corescale heterogeneity

► Flow-rate dependent

• Affected by simulation grid resolution

Subcore-scale Heterogeneity Decreases CO₂ Saturation

Effects of Flow Rate on CO₂ Saturation

90% CO₂ Injection Simulation

Capillary Pressure Distribution at Different Flow Rates

Brine Saturation

90% CO₂, 10% Brine Injection Variable Simulation Resolutions

Grid Size: 0.6×0.6×3mm Grid Count: 67,350

0%

CO₂ Saturation:

30%

55%

Grid Size: 1×1×3mm Grid Count: 23,400

Grid Size: 2×2×3mm Grid Count: 5,400

Length Along Core (cm)

Conclusions

- Core-scale multi-phase flow experiments reveal strong influence of sub core-scale heterogeneity
- Spatial variations in capillary pressure behavior control CO₂ saturations
- CO₂ saturation:
 - Decreases due to bypass of low porosity regions
 - Decreases at lower flow rates
 - Predictions depend on grid size
- Similar phenomena are expected at all spatial scales
- Fundamental research needed to improve model predictions
 - Fundamental process understanding based on lab and field experiments
 - Up-scaling strategies that accurately include the effects of sub-grid scale heterogeneity
 - Calibration and validation of predictive models